Spatial Methods & Data Management  

Geospatial problem solving for addressing societal challenges employs a wide variety of theories, methods, and tools, each applicable to a specific type or aspect of the problem solving process. All approaches, however, involve the acquisition, processing, and dissemination of data in one form or another. The Geoinformation and Earth Observation specialist must, therefore, be equipped with the necessary skills to find, use, preserve, and disseminate geospatial data. This course introduces conceptual models, analysis tools, and infrastructure for representing and analysing geographic phenomena in computer systems. The course covers both spatial and temporal aspects of the observed phenomena. Fundamental concepts of spatial representation including geometric primitives, topology, multidimensionality, spatial autocorrelation, graphs and networks, will be introduced in the context spatial data management. By the end of the course students should be able to interact with local or remote data resources using a variety of technologies including SQL and common web service APIs (e.g OGC WMS, WFS, WCS, REST). The student should therefore become familiar with common of data formats used in GIS and EO. Students will also learn to apply elementary data transformations (analysis) to obtain data in the appropriate structure for dissemination and presentation in both static and dynamic spatiotemporal visualizations. Applications in urban and land futures planning will be used in examples and exercises throughout this course. Learning units are organized so that concepts and methods from various knowledge categories are combined into a wholistic skill set that a student can use to solve a specific geoapstial problem.
English
Spatial Methods & Data Management
English

UNIVERSITY OF TWENTE

Faculty of Geo-Information Science and Earth Observation